
 

 

Real-Time Procedural Risers in Games: Mapping Riser 

Audio Effects to Game Data 

S. de Koning* 

Breda University of Applied Sciences, Monseigneur Hopmansstraat 2, 4817 JS Breda, the Netherlands 

 

Abstract 

The application of audio to a nonlinear context causes several issues in the game audio design workflow. Mainly, 

industry standard software is not optimised for creating nonlinear audio, and a disconnect exists between the 

game’s timeline and the audio timeline or grid. Standard middleware solutions improve the audio development 

workflow, but also cause new issues, such as requiring users to switch back and forth between different software 

before being able to test a sound in its context. This research applied procedural riser audio effects to a walking 

simulator horror game to explore an alternative to game audio development. The research investigated which 

are the essential parameters of the riser, and how they can be implemented in Unreal Engine based on the game’s 

state and events. Interviews have been done with game audio designers, programmers, and leads/directors. The 

interviewees were shown a prototype, developed for this research, that allows the user to design a riser, control 

how it should adapt, and implement it in Unreal Engine. Analysis of the interviews indicates that modulating 

the volume and pitch of the riser over multiple layers are the most essential parameters. These parameters can 

best be modulated based on the player’s current position, the elapsed time, and the amount of action over time. 

Furthermore, the data indicates that the approach put forward in the research is a viable and relevant solution to 

the stated issues and worth further investigation. 

 
Keywords: Procedural audio; Riser; Adaption; Implementation; Workflow; Audio 

1. Introduction 

Adapting parameters of audio in real-time, instead of playing cutup pieces of the audio based 

on game state and events, could be a practical and efficient game audio design method. Colin 

Walder, Code Lead Audio & Localisation, states: ‘By making a connection between the music and 

the game action we can effectively tell our audience what to feel’ [1]. There is a discrepancy 

between audio being inherently linear, as it can only exist over time and therefore cannot be 

paused, and games being nonlinear. Because of this discrepancy, certain issues arise in audio design 

and the audio design workflow. Examples of these issues are industry standard software that is not 

optimised for creating nonlinear audio, visual and interactive context not being available while 

developing the audio, the limitations for a composer using audio adaption based on dividing the 

audio in different parts and layers, and a disconnect between the game’s timeline and the musical 

timeline or grid. These challenges are inherent to the linear nature of sample-based audio being 

connected to real-time gameplay and will influence a player’s experience of the game. To tackle 

some of these issues, different middleware solutions exist. However, on top of not solving all the 

stated issues, middleware programs cause some issues of their own, such as requiring its users to 

 
* Corresponding author.  

E-mail address: sdk.stijn@gmail.com  

 

mailto:sdk.stijn@gmail.com


S. de Koning 2 

switch back and forth between a DAW, a middleware solution, and a game engine before being 

able to test a sound within its context. This research revolves around the question: What are the 

essential parameters to control a riser audio effect in a real-time video game, and how can they be 

implemented into Unreal Engine (UE) based on the game’s state and events? The aim is to solve 

some of the issues that emerge from sample-based audio, by creating a system for dynamic audio, 

and to demonstrate the validity of this this approach with a specific test case. All relevant material 

used in this research is available at sdkoning.com/PF/RTRResearchMaterial.pdf. 

To contextualise the research to a specific case, the implementation of riser effects in a horror 

environment is examined. Composer Mikael Baggström defines risers as: ‘Sounds that 

continuously increases the energy and tension build up.’ [2]. Risers are an interesting type of sound 

to investigate because their most important timing is at the impact point at the end of the sound’s 

build-up. More standard sounds, such as piano notes or gunshots, have a very immediate impact at 

the sound’s start. This makes risers difficult to use in an adaptive manner, because it is hard to start 

a riser without knowing when the impact is going to be. Currently, riser audio effects are prevalent 

in Hollywood audio, which may make them relevant for games as well. Also, risers are an effective 

low CPU and memory cost solution to get a lot of auditory impact and are applicable to both sound 

design and music. To further scope the research the adaptive risers are specifically tested on a 

horror environment in which the player moves around freely, and a jump scare occurs at some 

point. This test level has a limited number of external influences, is relatively simple to make, and 

the horror genre fits the focus on suspense of riser audio effects.  

2. Theoretical background 

2.1. The standard game audio workflow using middleware solutions 

The current standard approach of implementing audio in games is with the use of middleware 

solutions, described by Böttcher and Serafin: ‘Audio middleware is an interface between software, 

whereby the interface design is intended to reduce programming requirements for the sound 

designers, while allowing for connectivity with the game engine.’ [3]  

Guerrilla’s Decima engine applies an integrated audio system instead of using a middleware 

solution. In a talk about this system, audio designer Anton Woldhek and audio programmer 

Andreas Varga cite their motivations for this approach to include optimising the workflow, 

emancipating the audio discipline, and instantly being able to hear work in-game [4]. Allowing 

audio to be tested in-game in a matter of seconds, reduced idea to game time and removed the 

programmer from the creative loop.  

On top of using middleware, expressivity can be maximised by having sound designers and 

developers venture into each other’s territories, and providing sound designers with real-time tools 

improves their ability to communicate audio to the listener in a more direct way [5]. Furthermore, 

real-time audio has a powerful influence on a game’s interactivity, as immediately receiving audio 

feedback can be paramount to spatial and empathic immersion [6].  

2.2. Dynamic audio design methods 

A commonly used method in game music design, is to divide the audio into vertical and 

horizontal elements using reorchestration and resequencing [7]. Resequencing is transitioning 

between different pieces of audio, while reorchestrating applies different layers that fade in and out 

on top of each other. By applying different methods of reorchestration and resequencing, audio 

systems can be designed based on their required adaptiveness. New possibilities are generated by 

dividing the audio in stems and/or layers and applying a ruleset based on game data to what needs 



S. de Koning 3 

to be played and when. This reduces the music’s repetitiveness, on top of which fewer audio assets 

are required and storage space can be saved. Adapting audio based on game action also allows for 

the use of music as a gameplay element, to add to the immersion. In Risk of Rain 2 [8], the player 

travels through levels by finding and activating a teleporter, which emits a vertical audio layer to 

the music that increases in amplitude as the player approaches [9]. Using these adaptive 

composition techniques, audio can be linked to game events while still conforming to an audio-

based grid that adheres to tempo and measure. However, it can also cause a disconnect between the 

game action timeline and the audio timeline. Furthermore, when using reorchestration and 

resequencing, increasing audio’s adaptability, limits the composer as musical fragments must be 

shorter and adhere to more rules and can get in the way of the player’s flow [10]. 

2.3. Procedural audio in games 

The term ‘procedural audio’ can be used to refer to hyper adaptive audio systems that generate 

audio on a note-by-note basis in real-time, but also for any audio that adapts based on external 

factors. In this paper, the more standard adaptive audio techniques are referred to as adaptive or 

nonlinear, and hyper adaptive audio systems are referred to as real-time or procedural. 

Paul Weird, sound designer of No Man’s Sky [11], states that by applying procedural audio 

techniques, memory can be saved, and sound designers can obtain new tools and ideas for applying 

less linear and more dynamic sound design [12]. Weird considers procedural audio useful when 

there is an issue of scale and to avoid repetition. A few downsides of procedural audio stated by 

Weird are that variety does not get perceived as much when everything constantly changes, that it 

can take a lot of time and budget to make, and that it requires clear communication between 

programmers and sound designers.  

A ‘lack of meaningfulness’ is generally seen as a risk when using procedural audio. Weird 

touches on this problem: ‘It is almost like, its treating sounds like a function, rather than a creative 

emotive element.’ To address this, Weird added a ‘human element’ by analysing performances on a 

digital instrument made for Wwise. Mini Metro [13] applies serialism, a composition technique that 

uses sequential sets of data on different parameters working together to generate music [14]. Game 

data is combined with externally authored data, which consists of a ruleset that composer Freeland 

applies on their designed sounds, to again address the lack of a ‘human element’. Rise of the Tomb 

Raider [15] uses a percussion system that applies a data driven system which analyses composed 

midi tracks to generate variations in real-time. By analysing externally authored MIDI data, again 

the issue of procedural music not feeling ‘handcrafted’ is addressed [16]. 

Kent Jolly, audio developer for SPORE [17], mentions another risk with procedural techniques 

being that the sampled audio often used for these techniques can sound unemotive [18]. This was 

addressed in SPORE by only using very short types of sounds. Every other example discussed also 

mainly uses shorter sounds. Also in SPORE, to prevent the audio from becoming distracting, after a 

certain time threshold the audio gets ‘simpler’ and less in your face. 

2.4. Riser audio tools 

To map out the elements that risers can consist of, their different uses, and to help define them, 

common riser production plugins’ reoccurring features and notable differences have been 

examined. The following tools have been selected based on their popularity and how much they 

differ from their alternatives: Whoosh Designer [19], Gravity [20], Whoosh [21], Rise & Hit [22], 

and The Riser [23]. Risers generally consist of two parts: the build-up and builddown, or more 

commonly known as the attack and release. In between the attack and release is the impact. The 

only plugin that did not provide some form of impact sound is The Riser. The Riser is also the only 



S. de Koning 4 

tool that used synthesis instead of samples. Every analysed tool’s description or manual mentions 

the plugin to be created for designing cinematic type sounds, which supports the statement in the 

introduction that risers are prevalent in Hollywood’s film industry. Most extensive control is 

provided over the riser’s volume and pitch. Furthermore, panning and filtering are often 

emphasised. Recurring functionalities are allowing the user to link the timing to the audio grid, 

multiple options for setting duration, layering, and extensive modulation functionality. 

2.5. The Shepard scale 

The Shepard scale is a prime example of risers and their usefulness, as well as a potential 

solution to keep risers going indefinitely. In an article about the application of Shepard tones in 

modern media, Rapan explains: 

 

By managing the amplitudes of each octave in a Gaussian bell-shaped envelope, the 

frequencies in the extremes are not perceived: frequencies at the lower end enter softly, and the 

upper ones disappear in a similar way. This means that the middle frequencies are heard fully. 

These frequencies are very clear and always moving up or down, but the ones at the last octave 

slowly disappear. This is done in order to prevent our ears being aware of arriving at a limit, 

but they do perceive the resulting endless rise or fall. [24] 

 

2.6. Tools development and testing 

When designing a product that will add to a larger ecosystem, it is important to keep this 

ecosystem in mind during development [25]. It should also be investigated whether it is of 

importance to collect concrete data or to build a theory. Furthermore, not only should it be tested if 

the tool is something its target audience would want to use, but also if the developed tool itself is 

easy enough to use [26]. 

To gain insight in his experience with procedural tools development, technical artist and 

procedural tools developer at Ubisoft Paris Twan de Graaf has been interviewed for this research. 

On top of saving time by being able to generate output more quickly, De Graaf mentioned that 

procedural tools can play a significant role in avoiding human error. He also listed a few common 

traps in procedural tools development. Firstly, he said to avoid developing all encapsulating tools. 

‘Fixing one thing can break 3 other things.’ He also explained it makes finding bugs more difficult. 

Furthermore, De Graaf stated that he generally keeps parameters in the background first, because it 

is often a trap to expose too many parameters: ‘It often turns out that you are not going to use 80% 

of them.’ When asked about when a tool is finished, De Graaf replied: ‘Basically never. […] They 

are done until somebody asks for a new feature.’ 

3. Methodology 

3.1. Research method 

Data has been gathered by interviewing audio developers in the field about a prototyped tool 

that implements real-time procedural risers. Quantitative data gathering has been waived because 

the perception and knowledge of audio of the general game audience can vary widely. Professional 

audio designers, unlike players, have a general understanding of audio and its practical uses in 

games. Furthermore, proving the method can enhance the experience for an audience without 

providing a method of applying real-time risers, would reduce the direct industry relevance of this 



S. de Koning 5 

research [27]. Developing a tool allows the interviewees to experience the real-time audio design 

method instead of having to speculate about the approach. Since the research is about exploration 

and understanding as opposed to attempting to validate a theory, the results should provide an 

indication based on the opinions of professionals. 

Each interviewee has been questioned based on the same script, which includes questions about 

the background of the interviewee and their ideas about the topic, an introduction of the research, a 

first round of questions, a brief showcase of the tool, and a final round of questions. The interviews 

were conducted by video call, facilitating interviews around the world. The tool has been 

showcased by the interviewer, as sending a tool to interviewees to try it out themselves was out of 

the scope of this research, and having interviewees try out the software themselves could shift their 

focus to the software’s user experience instead of the viability of the proposed method.  

The collected data has been transcribed with Otter [28] and analysed using inductive thematic 

analysis with MAXQDA [29]. Grouping the data based on different themes served to obtain a clear 

overview of the answers and their relations to one another, to be interpreted to answer the research 

question. 

3.2. Prototype tool 

The uses of the prototype include building audio, implementing audio, making audio a 

gameplay element, and the sonification of physical elements or events. The source code for the 

prototype is available at https://github.com/StijndeK/RTR and an overview video can be found at 

https://sdkoning.com/PF/RTRShowcase.html. A more modular approach was preferred, to account 

for future innovations in the field and so that it can more easily be applied to other types of audio. 

To address the risk of missing a ‘human element’, control over the sound and adaption of the riser 

has been provided. 

As concluded in Chapter 2.4, risers generally consist of three dynamic elements: the attack, the 

impact, and the release. Most emphasis is put on the attack as risers are often used to build up to 

something. Risers are made by modulating parameters of audio in order to first build up the audio 

in intensity during its attack and then decrease in intensity during its release.  

Three main factors are important to control the modulation: the modulation intensity curve, the 

speed in which the audio is modulated over the curve, and the range over which to modulate. These 

three factors should be set based on the sound and the audio parameter that is modulated. For 

example, modulating the pitch of a-tonal noise does not have any effect. Based on their auditory 

impact as well as on how much they occurred in the analysis of existing riser plugins, amplitude 

and pitch have been selected as the essential parameters to modulate. 

As live synthesis was out of scope for this research, looping samples have been used. Riser 

samples were deconstructed to static loop-able samples without any modulation and their pitch and 

gain were modulated during playback over a multitude of layers. Based on the literature review a 

classification of five layers was constructed: noise, pads, impacts, Shepard scale, and FX.  

To adapt the riser to game data, three types of modulation, that are combined to reach the 

eventual output, have been designed. The first is called position modulation and is modulated by 

the position the riser needs to reach. For the designed test level this is the player’s distance to the 

impact point, relative to the distance between the start and impact point. The second is called action 

modulation and decreases the riser’s intensity based on the amount of game action happening. The 

action modulation can be divided in two aspects: having the riser fall in intensity and reaching the 

lowest point of intensity where no more modulation is possible. During the lowest point of 

intensity, only minimal static sounds will be played. A Shepard scale is used here to still have the 

riser feel like it is building in intensity. The third type of modulation is time modulation. As in the 



S. de Koning 6 

example of Spore in Chapter 2.3, the audio becomes less intense after a certain amount of time, to 

prevent the audio from becoming too distracting.  

To decide on the specific type of level to test the risers on, different test levels have been 

designed and compared, and based on this the case of a walking simulator horror game with a jump 

scare has been selected. The horror genre lends itself well to the intensity of risers and this case has 

little external factors that could influence the data such as enemy AI or a combat system. As not 

placing any other sounds in the context game could feel unnatural and would not accurately 

represent how well the riser works within context, the other sounds in the level can have an 

influence on the experience, which is taken into consideration during data analysis. To quickly 

develop the test level, a finished graduation project that fits the designed test case called Project 

Rookery [30] has been used. It should be noted that results based on this game can differ from 

results based on publicly released commercial games. 

To first test the design and gain insight in the difficulties of applying the method in current 

standard middleware, the real-time adaptive risers have been implemented in the test level using the 

commonly used middleware solution FMOD [31] (Fig. 1). Designing and implementing the 

procedural risers using FMOD was inefficient, due to the need to manually set parameters and 

curves, where this process could be automated. In addition, as FMOD only provided a list of the 

parameters and their current value, there was only little overview. The eventual result within the 

test level was satisfactory, indicating the method of adapting parameters to suffice. 

 

Fig. 1. Screenshot of the FMOD main event and its parameters (right side). 

 

To decide on an approach to developing the tool’s prototype, common approaches to game 

audio tools have been examined and their main advantages and disadvantages have been listed and 

compared. As mentioned in Chapter 2.6, how the tool fits in the current ecosystem should be 

considered. The examined options include middleware or game engine plugins, game engine editor 

tools, and a middleware-based approach. The middleware-based approach applies a middleware 

editor used by the audio designer to design the audio and its adaption, that is then integrated in the 

engine using a plugin. Because of this research’s exploratory nature, there is a high likelihood that 

features will have to be adapted or extended upon. The tool should also be easy to integrate into the 

current audio workflow to mediate the risk, described in Chapter 3.1.4, of the tool not being viable 

because it takes too much time to implement in an audio designer’s workflow. Based on the 

examination of different approaches, a middleware-based approach was selected. The middleware-

based approach is not the fastest approach, but it is the most modular, least restricted, it allows for 



S. de Koning 7 

quick implementation in any engine, and because it is based on current middleware solutions audio 

designers are used to the approach. 

 

Fig. 2. A visualisation of the dataflow of the prototype. 

 

The developed prototype consists of four elements (Fig. 2). The Audiosystem is used to play 

and modulate the audio. As with standard middleware, the editor tool and the engine plugin use the 

same low level audiosystem. In the editor tool (Fig. 3) the audio designer can design the riser, set 

settings on how the riser should adapt to game data, and play the riser by mocking game data. In the 

SOUND tab (Fig. 3 A), the user can select which layers should play. In the ADAPTION tab (Fig. 3 

B) all settings on how to adapt the audio can be controlled. The MOCK tab (Fig. 3 C) can be used 

to play the riser within the editor tool. Visual feedback is provided with an intensity curve and a 

waveform visualiser (Fig. 3 D). Control over the three different modulation types is provided at the 

bottom of the screen (Fig. 3 E). The editor tool exports the user’s settings to a .json file that is 

imported by the UE4 plugin. For the integration in UE4, two actors have been developed, one for 

the start and one for the riser’s impact position. The riser can be implemented by dragging these to 

the correct positions in the level. Alternatively, blueprint nodes can be used. 

 

Fig. 3. The editor tool divided into various components. 

3.3. Pilot study 

To test the designed research method, an initial test interview about an early version of the 

prototype was done with audio director and composer Jonathan van den Wijngaarden. Some 

interview questions were edited or removed because the interview took ten minutes too long, and 

they were not as relevant to the research question. Valuable insights were gathered, and other then 



S. de Koning 8 

taking too long, the interview went smoothly. Based on these results, it seemed likely that the 

collected data would suffice. 

4. Results & discussion 

4.1. Data coding 

Based on the gathered data from nine interviews, I created 48 codes and subcodes, divided into 

six topics (Fig. 4). ‘Parameters and Modulation’ are all codes that answer the part of the research 

question regarding what parameters to modulate and how to adapt them to game data. ‘Viability’ 

discusses the value and industry relevance of the proposed method. ‘Procedural Audio’ and 

‘Background Information’ both give insight into the interviewee’s background. ‘Pipeline and 

Workflow’ includes every code about how to integrate the method in an engine. Finally, ‘Other 

Relevant Data’ collects other codes that do not fit the previous topics. 

 

 

Fig. 4. Code density overview with the number of codes per topic. 

4.2. Participants 

Interview participants were based in East Asia, Western Europe, and North America. Table 1 

provides an overview of the participants interviewed, their years of experience in game 

development, and their role titles. The role titles have been divided in four categories. The term 

audio designer was used for people who describe themselves mainly as being a sound designer or 

composer, which are the people who develop the audio assets and possibly implement them as well. 

The title audio programmer was used for people who focus on any game audio related 

programming. The category audio direction/lead was used for interviewees who work in managing 

and leadership type roles. Because audio directors or leads often have extensive experience in audio 

design or programming, they have been categorised based on whether they are more experienced in 

design or in programming. Due to differing career trajectories, the exact experience of participants 

within each category can vary widely.  

All participants indicated that they enjoy experimenting and agreed the space for it is mainly 

based on available time and budget. All participants recognised the issues related to game audio as 

stated in this research. When asked about the advantages and disadvantages of procedural 

techniques, all participants agreed they can be technically demanding and are not always required. 

The main advantages mentioned are that procedural audio allows for faster reactivity and that it can 

automate much of the design process. A few interviewees also pointed out that by being able to 

react more quickly, game audio design can move more towards movie-like sound design.  

    

67

36

23

32

55

9

Background Information Interviewee

Parameters & Modulation

Pipeline & Workflow

Procedural Audio

Viability

Other Relevant Data



S. de Koning 9 

Table 1. Overview of interviewees 

Interviewee Years of experience Role 

Davis, Will 20 < Audio lead/director designer 

Duquesne, Clément 5 – 10 Audio designer 

Fournel, Nicolas 20 < Audio lead/director programmer 

Fuesslin, Florian 15 - 20 Audio lead/director designer 

Hays, Tom 20 < Audio lead/director designer 

Huguenard, Charlie 10 - 15 Audio programmer 

Smit, Tom de > 5 Audio designer 

Vera, Bogdan 5 - 10 Audio programmer 

Wijngaarden, Jonathan van den 10 -15 Audio lead/director designer 

 

4.3. Riser parameters and modulation based on game data 

Eight out of nine interviewees agreed with the parameters and modulation used in the 

prototype. This supports the analysis of existing riser plugins in the literature review (in Chapter 

2.4). The interview with Duquesne did not contain sufficient data on the parameters to form a clear 

conclusion of his opinion on this subject. All participants did name parameters to add, and four of 

the interviewees specifically indicated that there are many parameters to add. Also, two 

interviewees said that a riser does not have to be a new sound but can also be the adapting of 

already playing sound. Audio programmer Vera stated: ‘Think of it like the riser itself does not 

have to be just the sound that is rising. […] It is the gesture of the riser that can be applied to many 

things.’ Based on these results, it can be argued that the riser’s parameters in the prototype of 

volume and pitch modulation are the basic parameters for a riser to adapt to game data, at least for 

the specific test level used in this research. 

All participants except Duquesne agreed with the way the parameters are modulated based on 

game data in the prototype. This indicates that modulation based on action, time, and action over 

time can be effective game data to control the riser’s parameters. Duquesne found the riser did not 

rise enough at the end. Huguenard said: ‘The abstraction of position in motion or action, that makes 

sense.’ Huguenard, De Smit, and Davis raised the question of what would happen if the player 

started to behave very unpredictably. Fuesslin argued players tend not to behave unpredictably in 

this test case. About unpredictable player behaviour, Vera mentioned: ‘if they are trying hard to 

break your riser, it is their fault. The average person really will not, because it is a video game 

anyway. I can go really close to a texture and look at it and it is going to look like it is low res, 

because it is a video game.’  

4.4. Pipeline, workflow, and user control 

Four interviewees stated that the tool’s middleware-based approach works well. Fournel 

emphasised it works well as it saves time, and Hays noted there might be difficulties integrating the 

tool in an existing middleware: ‘I think you could come close, but its underlying intent is different.’ 

The other interviewees thought integrating the method into an existing standard middleware or 

engine would be a better approach. It is notable that two of the four interviewees who found the 

prototype’s approach sufficient also mentioned integrating the tool into current standard solutions. 

This supports the research outcome that audio developers prefer tools to be integrated directly into 

their game’s engine. In addition, all four interviewees that stated the prototype’s approach works 



S. de Koning 10 

well are categorised as audio lead/director. This could be because people in leadership positions are 

less focused on the practical workflow, but it could also be argued they may be more experienced 

with adapting their workflow. All audio designers mentioned they would prefer the tool to either be 

in the middleware or the game engine. Audio programmers showed greater awareness of the 

challenge of implementing the prototype into their existing engine or middleware, but they also 

recognised that audio designers would want it to be integrated in this way. Future research should 

be done to integrate the prototype directly in an engine or middleware. 

Audio designers generally wanted more control over the sound design. Fournel stated: ‘I think 

where you want to give options is more on the creative side and less on the implementation side.’ 

Fournel also mentioned that this type of tool provides new controls that most audio designers are 

not currently accustomed to having. Vera supported this by stating: ‘there is a tension when it 

comes to sound design people not being in control of the same parameters they are used to. [...] 

You have to teach them a whole new technical skill when it comes to procedural. It is almost like a 

procedural sound designer is a different role than a sound designer.’ The use of the prototype would 

either require sound designers to learn a new skillset, or for the prototype to provide more control 

over the riser’s sound design. 

4.5. Viability and industry relevance  

It can be argued that the research is relevant and viable as eight out of the nine interviewees 

stated that the method has potential. Some interviewees were very convinced, and others agreed 

that it has potential, but also mentioned it may have some issues and conditions. Five interviewees 

said they are curious how well it performs for edge cases, indicating that although they believe the 

approach to be viable, there are certain issues that have not yet been addressed in the prototype. The 

prototype’s viability is supported by all interviewees either mentioning examples where they would 

have liked to, or could have, applied it in the past or mentioning potential future use cases. Six 

interviewees mentioned a use case for which they would have liked to apply the method in a game 

they have previously worked on. The other interviewees said that their type of projects would not 

have required it. Seven interviewees put forward potential future use cases for which they would 

find the tool interesting or for which they thought it might work well.  

Duquesne was the only interviewee who was not positive towards the viability, as he stated: ‘I 

am so familiar with Wwise that I think I would still go to Wwise […] And also, I did not have 

many risers in my games. [.…] One of the reasons that I am not very attracted to specific audio 

middleware is that I have the competence to do audio tools that answer to specific needs.’ 

Duquesne also said: ‘if it is not important for your game, then you do it in another simpler way or 

you just do not do it if it is not that important.’ Duquesne’s more negative response to the viability 

of the prototype can be explained by his ability to program himself, not finding the modulation 

sufficient, being used to a workflow with Wwise, not having used risers much before for games, 

and wanting full control over the audio effect. 

4.6. Validity, replicability, and relevance 

Interviews with audio developers with different types and amounts of experience from different 

parts of the world provided a broad perspective on the research question. Information on the 

interviewees and their backgrounds is provided and all used material, including the codes, interview 

scripts, and the prototype tool, is available online1. Furthermore, asking questions based on a proof-

 
1 All relevant data has been made available at: https://www.researchgate.net/publication/352020351_Real-

Time_Procedural_Risers_in_Games_-_Research_data 



S. de Koning 11 

of-concept prototype, reduces the amount of speculation, and applies the research to an example 

that is directly relevant to the industry.  

Because the interviewer was also the one who created the interview and prototype, the 

participants may have been more willing. Furthermore, since interviewees were asked about their 

general impression, were encouraged to mention anything they might think of, and questions were 

contextualised to the background and experience of each interviewee, not every question was 

formulated in the same way or asked in the same order. This is consistent with the research’s 

qualitative nature, but it should be noted that the order and way the questions were asked may have 

influenced the interviewees answers.  

The results indicate an interest in the proposed method as well as that it can be a viable industry 

application, which supports the industry relevance of the research. Eight of the nine participants 

indicated that the proposed method is viable. Furthermore, all participants recognised the stated 

issues.  

4.7. Ethical Concerns 

Even though diversity among the interviewees was focused on when reaching out to 

professionals and people around the world have been interviewed, there is a lack of diversity 

among the interviewed professionals, as they are predominantly white and male. This can firstly be 

caused by the general lack of diversity in the industry, but this is also a reflection of wider issues of 

access to technology for women and minorities, and this is rooted in deeper systemic issues of 

sexism, racism, and capitalism in society. Other potential explanations are that minorities in the 

industry might not be confident to do interviews, they might be frequently asked for these types of 

interviews because they are part of a minority, or they might not want to be asked based on their 

gender or other characteristics.  

4.8. Summary 

The analysed data indicates that the parameters and modulation used in the prototype are the 

essential parameters to control a riser. The parameters the prototype uses are volume and pitch 

modulation over five layers, with control over the modulation’s seek speed and curve. They can be 

adapted to game data using modulation based on action, time, and action over time. The real-time 

riser effect can be efficiently implemented using a middleware-based approach, although 

integrating into middleware or an engine is often preferred, especially by audio designers. 

Furthermore, the results indicate the method is a viable approach, which improves the research’s 

relevance and validity. The diverse backgrounds of the interviewees, the contextualisation of the 

research question using a prototype, and the replicability of the research also improve the validity 

of the research.  

5. Conclusion and further directions 

This thesis set out to explore potential improvements to the standard game audio workflow by 

tackling various reoccurring obstructions, using the scoped case of riser audio effects for a walking 

simulator horror game. Research into existing work confirmed there to be room for optimisation in 

the game audio workflow, highlighted some successful solutions in the past, provided insight in the 

most important features of existing riser audio tools being gain and pitch control, and provided 

insight in a potential approach to keeping risers going for a long time by using Shepard scales. The 

prototype proposes a method of integrating audio based on adapting parameters of the audio itself, 

instead of triggering different pieces or layers of audio based on what is happening in the game, 



S. de Koning 12 

with a quick and easy to use integration into Unreal Engine. Professional audio developers with 

varying roles in the field have been interviewed based on a prototype that applies this method to 

reduce speculation.  

The analysed data indicates the essential parameters to control a riser in a real-time video game 

are the riser’s gain and pitch over a multitude of layers. However, a lot of other parameters were 

named that sound designers would prefer to also control, such as panning and filtering the 

frequency spectrum. These parameters can be efficiently modulated based on action, time, and 

action over time, where every modulation type has a separate range and threshold, and every layer 

has a separate modulation curve and range. The real-time riser effect can be efficiently designed 

and implemented using a middleware-based approach consisting of a standalone tool with a user 

interface that extracts a datafile, which is read by a game engine plugin that can be used to link the 

riser to game data. Using this approach, the tool is not restricted by the limitations of common 

middleware. However, further research could explore different approaches to the tool, because a 

high number of interviewees mentioned they would prefer the tool to be integrated in standard 

middleware or the game engine. The data also indicates the prototype’s approach to implementation 

in Unreal Engine 4 works well, i.e. using two game objects, or with the alternative approach using 

blueprints. Furthermore, the data gathered showed overall positivity towards the viability of the 

method, also for other game cases and audio sound effects. Future research could explore applying 

the method to other audio effects and games. The diverse backgrounds of the interviewees, the 

contextualisation of the research question using a prototype, and the replicability of the research 

speak to the validity of the research. However, user testing the tool with audio developers and user 

testing the resulting game audio with players could also be valuable future research to gain more 

insight in the method’s viability and how to apply it. Also, four of the interviewees mentioned the 

proposed method allows for making audio less reactive and therefore allows closer alignment with 

the techniques used in film and other linear media, which is another interesting field to explore in 

further research. This study indicates that adapting the pitch and gain of multiple layers of a riser 

based on time, action, and action over time, implemented with an automated pipeline, may be a 

viable solution to current game audio design obstructions and is worth further investigation. 

Declaration of competing interest 

The author declares that he has no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

References 

[1] C. Walder, Synchronizing Action-Based Gameplay to Music, in G. Somberg (Ed.), Game Audio Programming 2, Taylor 

& Francis Group, Boca Raton, 2019, pp. 332–347. 

[2] M. Baggström, Sound Design – Create Riser FX for Transitions, retrieved November 2020, from 

https://www.skillshare.com/classes/Sound-Design-Create-Riser-FX-for-Transitions/1618082930. 

[3] N. Böttcher, S. Serafin. A review of Interactive Sound in Computer Games: Can Sound Affect the Motoric Behaviour of 

a Player?, in K. Collins, B. Kapralos, H. Tessler (Eds), The Oxford Handbook of Interactive Audio, Oxford University 

Press, Oxford, 2014. 

[4] A. Varga, A. Woldhek, The Next-Gen Dynamic Sound System of Killzone Shadow Fall, 2014, retrieved October 2020, 

from https://www.gdcvault.com/play/1020559/The-Next-Gen-Dynamic-Sound. 

[5] S. Kohata, An Interactive Sound Dystopia: Real-Time Audio Processing in NieR: Automata, 2014, retrieved October 2020, 

from https://www.youtube.com/watch?v=BrUQdd96qzk&t=28s. 

[6] M. Haggis-Burridge, Four categories for meaningful discussion of immersion in video games, 2020 extracted June 2021, 

from 

https://www.researchgate.net/publication/340686774_Four_categories_for_meaningful_discussion_of_immersion_in_vi

deo_games. 

https://www.gdcvault.com/play/1020559/The-Next-Gen-Dynamic-Sound
https://www.youtube.com/watch?v=BrUQdd96qzk&t=28s


S. de Koning 13 

[7] C. Huguenard, Note Based Music Systems, in G. Somberg (Ed.), Game Audio Programming 2, Taylor & Francis Group, 

Boca Raton, 2019, pp. 307–331. 

[8] Risk of Rain 2 (video game), Hopoo Games, 2020. 

[9] S. de Koning, Composing for Games as a Film Composer, 2019, retrieved October 2020, from https:// 

sdkoning.com/PF/ComposingforGamesasaFilmComposer.html. 

[10] M. Gordon, DOOM: Behind the Music, 2017, retrieved October 2020, from 

https://www.youtube.com/watch?v=U4FNBMZsqrY. 

[11] No Man’s Sky (video game), Hello Games, 2016. 

[12] P. Weir, The Sound of No Man’s Sky, 2017, retrieved October 2020, from 

https://www.youtube.com/watch?v=zKJ_XuQjjiw. 

[13] Mini Metro (video game), Dinosaur Polo Club, 2014. 

[14] R. Freeland, Serialism & Sonification in Mini Metro, 2014, retrieved October 2020, from 

https://www.youtube.com/watch?v=FgV4hSfsl00&t=37s. 

[15] Rise of the Tomb Raider (video game), Crystal Dynamics, 2015. 

[16] P. Lamperski, B. Tahouri, Real-Time Procedural Percussion Scoring in ‘Tomb Raider’s’ Stealth Combat, 2016, retrieved 

October 2020, from https://www.gdcvault.com/play/1023215/Real-time-Procedural-Percussion-Scoring. 

[17] SPORE (video game), Electronic Arts, 2008. 

[18] K. Jolly, A. McLeran, Procedural Music in SPORE, 2008, retrieved October 2020, from 

https://www.gdcvault.com/play/323/Procedural-Music-in. 

[19] Whoosh Designer (audio DAW plugin), Zero-G, 2014. 

[20] Gravity (audio DAW plugin), Heavyocity, 2016. 

[21] Whoosh (audio DAW plugin), Tonsturm, 2014. 

[22] Rise & Hit (audio DAW plugin), Native Instruments, 2014. 

[23] The Riser (audio DAW plugin), Air, 2014. 

[24] E. Rapan, Shepard Tones and Production of Meaning in Recent Films: Lucrecia Martel’s Zama and Christopher Nolan’s 

Dunkirk, in D. Power, S. Deutsch, LK. Sider (Eds), The New Soundtrack, Edinburgh University Press, Edinburgh, 2018, 

pp. 135–144. 

[25] D. Aliakseyeu, User Experience Evaluation in Industry, Guest lecture presented in Breda University of Applied Sciences, 

Breda, 2020. 

[26] D. Gaiduk, How to Do Usability and UX Testing for Mobile Apps, 2019, extracted October 2020, from 

https://medium.com/uxreality-blog/how-to-do-usability-and-ux-testing-for-mobile-app-211f92f3cd6d. 

[27] A. Burls, D. Gray, M. Kogan, Salutogenisis and coaching: Testing a proof of concept to develop a model for practitioners, 

International Journal of Evidence Based Coaching and Mentoring, Vol 12 (2) (2014) 41-58. 

[28] Otter (transcribing tool), Otter.ai, 2016. 

[29] MAXQDA (qualitative data analysis tool), QSR International, 2020. 

[30] Project Rookery (video game), graduation project University of the Arts Utrecht, 2020. 

[31] FMOD (middleware), Firelight Technologies (1995) 

https://www.youtube.com/watch?v=U4FNBMZsqrY
https://www.youtube.com/watch?v=zKJ_XuQjjiw
https://www.youtube.com/watch?v=FgV4hSfsl00&t=37s
https://www.gdcvault.com/play/1023215/Real-time-Procedural-Percussion-Scoring
https://www.gdcvault.com/play/323/Procedural-Music-in

